A Resistance Compensation Control Algorithm for a Cable-Driven Hand Exoskeleton for Motor Function Rehabilitation

نویسندگان

  • Shuang Wang
  • Jiting Li
  • Ruoyin Zheng
چکیده

The resistance compensation, especially the friction compensation in the Bowden cable transmission is a difficult issue to be handled. Aimed to the resistance reduction requirement in the active rehabilitative motion, a resistance compensation control method is proposed. Based on the simplified transmission model, the resistance, including the cable friction as well as the mechanical moment of inertial, is formulated. To realize the compensation, force sensors are used to measure the force exerted by the human fingertip. With the proposed algorithm, the maximum finger-exerted force is reduced to less than one third of before. The experimental result demonstrates the validity of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Development of Cable Driven Upper Limb Exoskeleton for Arm Rehabilitation

this paper describes the design and kinematic analysis of a 5 DOF upper limb powered robotic exoskeleton for rehabilitation of the patients who survived stroke and the elderly who do not have enough strength to move their limbs freely. It was observed that the existing upper extremity exoskeletons were bulky and heavy which made them limited to applications and the complexity of the system incr...

متن کامل

Stability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables

In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...

متن کامل

Cable-Driven Robot for Upper and Lower Limbs Rehabilitation

The science of rehabilitation shows that repeated movements of human limbs can help the patient regain function in the injured limb. There are three types of mechanical systems used for movement rehabilitation: robots, cable-driven manipulators, and exoskeletons. Industrial robots can be used because they provide a three-dimensional workspace with a wide range of flexibility to execute differen...

متن کامل

Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial

Repeated use of brain-computer interfaces (BCIs) providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical tr...

متن کامل

An index finger exoskeleton with series elastic actuation for rehabilitation: Design, control and performance characterization

Rehabilitation of the hands is critical for the restoration of independence in activities of daily living for individuals exhibiting disabilities of the upper extremities. There is initial evidence that robotic devices with force-control-based strategies can help in effective rehabilitation of human limbs. However, to the best of our knowledge, none of the existing hand exoskeletons allow for a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010